Topics for the Developers Breakout Session
at the LAMMPS User Workshop 2015

New physics features

O O O O

linked rigid bonds for TraPPE force field (see p-LINCS in Gromacs)

dummy atoms (e.g. to support SHAKE with linear molecules, see Gromacs)
polarizable point dipoles (cf. Tangney/Scandolo JCP paper)

generalized Born implicit solvent model (GBIS, GBSA) and beyond

Input/output, pre-/post-processing features

O O O O O

HDFS5 file support for trajectory (merge code from Pierre de Beuyl, http://nongnu.org/h5md/)
native readers for .psf (CHARMM/NAMD) or .parmtop (Amber) or .tpr (Gromacs) or ...
consolidate converter tools to interface to different codes (which ones?) into one package
VMD GUI plugin frontend for running simple calculations (cf. NAMD GUI plugin in VMD)
Revisit MPI integration for Python wrapper. what are desirable improvements to wrapper

Improved efficiency and accuracy

@)
@)

use structs for storage of parameters instead of individual arrays, especially for non-bonded
general SIMD support via compiler vectorization including: SIMD friendly storage of x-,y-,z- data,
SIMD friendly neighborlist (cf. paper by Pall / Hess in CPC), mixed precision SIMD force kernels,
vectorizable inline math for potentials using exp()/log()/pow() (vdt++, fastermath)

improved load-balancing, e.g. bias the result of fix balance using feedback from timer class
status of KOKKOS vs. GPU vs. Intel and beyond. how to make it easy to use and to contribute to

Build system

@)
@)
@)
@)

adopt cmake or automake; stop copying sources, but include via variables and vpath

full support for building multiple targets including libraries from one source tree

better support for developers using IDEs (eclipse, netbeans, visual c++, ...)

support dynamically loadable styles through a plugin system (incremental updates for binary
distributions, commercial add-ons, executable only contains executable code that is used)

Documentation, training and outreach

O

o O O O O ©O

reorganize documentation into: 1) a user’s guide to introduce using LAMMPS (driven by use cases),
2) an installation guide (with recommendations for deployment on clusters, compiler optimization),
3) a reference guide (documentation of commands/features), 4) a developer’s guide

bundle the above with introductions to relevant theory and publish as a collaborative book
LAMMPS web page: what should be added, what can be improved, what can be removed?
improvements to developer’s guide, inline documentation using doxygen and sphinx

coding style guide; recommendations for portability and efficiency

organize LAMMPS specific developer training (e.g. combined with HPC programming)

mailing list status alternate ways of user support, especially help for beginners in MD and LAMMPS



Project management and software engineering

how to make it more attractive for people to contribute to LAMMPS

status of use of C++11 (and beyond) features; same for STL, Boost.

how to reduce the growing redundancy and keep the project maintainable

removal of obsolescent/outdated code? which?

consolidation of common tasks (e.g. argument parsing)

public automated regression/integration testing; encourage using bug reporting / issue tracking tool
organize developer hack-a-thon to work on topics of general concern

refactoring of LAMMPS following the S.O.L.1.D principles

move from subversion to git?

o O O 0O O O O O ©o

Licensing, contracting, and relation with commercial “providers”

o what are the opinions on using GPL for LAMMPS? should (can?) LAMMPS switch to LGPL
o how to set up a way where people can “contract out” a feature they need?
o should there be a “LAMMPS foundation” to be more flexible to take care of the LAMMPS community



